媒體
  • 澳廣視新聞
  • 政府消息
  • 濠江日報
  • 澳門日報
  • 力報
  • 新華澳報
  • 正報
  • 華僑報
  • 現代澳門日報
  • 論盡澳門
  • 澳門平台
  • Media OutReach
  • 美通社
分類
  • 國際
  • 財經
  • 娛樂
新聞
  • 趨勢科技研究指出逾六成智能工廠曾遭網絡攻擊
  • 華懋集團夥拍香港科技園公司 攜手協助本地初創企業發展智慧城市技術 加速方案測試及應用
  • Advanced Energy 全新推出的小型功率因數校正電源模組可提高多種不同高壓應用的電源轉換效率
  • AOC再奪最高榮譽 連續2年蟬聯全球電競顯示器市場冠軍
  • 「香港人工智能及機器人大會」 促進香港及大灣區智慧產業發展
  • 全方位雲端保安防護平台 簡化雲端開發人員保安負荷
  • ポストコロナ時代、客家の美を台日共同で発信
  • M+博物館大樓竣工 亞洲首間全球當代視覺文化博物館 預計2021年年底於香港開幕
  • BidFX擴充產品套件 新增市场數據及分析功能
  • Advanced Energy 推出首款適用於電信和運算系統的48V直流輸入電源供應器
  • 歹徒利用冠狀病毒疫情加強攻擊雲端電郵
  • Appier 分享 2021 年值得關注的人工智慧預測及其趨勢
  • Appier闡述機器學習即服務在實務應用上的挑戰與機會
  • VAIO®打造全球首款碳纖筆記型電腦
  • VAIO®推出全球首部3D碳纖電腦VAIO®Z
  • Trend Micro Vision One 平台協助資訊保安營運團隊降低警示負荷
  • AOC推出全新AG273FXR Agon電競顯示器 粉色系列新勢力 最佳情人節之選
  • 全新Fujitsu (富士通) 商用筆記型電腦系列 將新工作模式生產力提升至嶄新水平
  • 粉紅新勢力:助您在台渡過最佳情人節的AOC AG273FXR Agon 顯示器
  • 粉紅新勢力:助你渡過最佳情人節的AOC AG273FXR Agon 顯示器

Appier闡述機器學習即服務在實務應用上的挑戰與機會

2021-02-22 08:30


台北,台灣 - Media OutReach - 2021年2月22日 - 專精於人工智慧(AI)的台灣新創公司沛星互動科技(以下簡稱 Appier)今日發表對機器學習即服務在實務應用上的挑戰與機會的觀點。對於尋求競爭優勢的企業來說,機器學習(Machine Learning)是一項不可或缺的技術,它可以快速處理大量數據,幫助企業更有效地向顧客提出建議,優化製造流程或是預測市場變化;而在商業情境中,機器學習即服務(Machine Learning as a Service,MLaaS)提供商則被定義為──設計和導入機器學習模型的公司,借助機器學習技術為客戶提供持續一貫的服務。

如今,企業每天都要處理大量的數據,數據增長的速度比以往任何時候都要快;同時,由於產業競爭的迅速變化,能否快速進行決策對於商業組織來說至關重要,因為業務的成功取決於能否善用現有的資訊做出快速、準確的決策。這對於顧客需求與行為快速變化的產業格外重要,特別是2020年以來COVID-19大流行,人們的購物習慣、工作行為和社交方式都發生急遽的變化,也迫使企業也不得不改變服務客戶的方式以滿足新的需求。這意味著企業蒐集和處理數據所採用的技術必須更加彈性,才能更快地導入新數據,並且靈活地在商業決策上應用,賦予企業快速採取行動的競爭力。

Appier觀察將「機器學習模型」延伸為「機器學習即服務」的當前挑戰在於──如何建構模型?以及如何教會未來的機器學習人才落實這項工作?目前機器學習模型的研發工作多半集中在單一模型的建構上,通常人們採用一組數據用於模型的訓練上(預先設定好系統該具備哪些功能與標籤)以針對另一組數據的標籤(通常稱為測試數據)產出精準的預測。但是,如果我們希望滿足的是現實世界中顧客不斷變化的需求,企業用以訓練和測試模型的數據就不能那麼清楚地一分為二;因為,今天用於測試或預測的數據可能立刻就要作為明天用於訓練模型的數據,才能讓模型不斷優化,擁有更佳的表現。

基於Appier多年的實務經驗,用於訓練模型的數據也不可能完美,原因除了現實世界中的數據來源不完整、數據並非結構化數據(例如客戶的開放式問卷),數據在蒐集過程中也有可能存在偏見(例如,用以訓練推薦模型的數據通常是來自另一個線上推薦系統蒐集到的反饋)

正因為訓練模型的數據存有另一個模型的影子,偏見不可能消失。

而人們最在意的結果通常是最難被預測和推論的,以電商品牌的數位行銷過程為例,常見的用戶旅程是消費者「點擊商品」、「查看商品」、「將商品加入購物車」、最後才「購買商品」;但往往系統所記錄的用戶軌跡很少這麼單純,人們可能會在不同設備上多次查看某件商品,可能會將商品從購物車移除後再重新加入,可能在猶豫了好一陣子後還是放棄購買,這些複雜的動機與行動都是單一機制難以去預測和推論的。

而且,要得知用戶到底有沒有購買會比取得其點擊或瀏覽的數據更加困難(如果消費者不是在你的平台完成結帳,商家根本無從得知他是否還想要收到這件商品的廣告)。假如MLaaS只仰賴最簡單點擊和瀏覽指標,模型的建議很有可能無法滿足最終的業務目標,因為模型有可能在錯的時機發送推播訊息。

一家提供機器學習服務的B2B AI公司可能同時要為成千上萬個來自不同領域的客戶提供服務,為了使數千個模型能夠始終如一地運行,持續在線上提供服務,並且滿足客戶不斷變化的業務目標,需要每天不斷對模型進行訓練或更新數據,好讓模型因應現實世界中客戶不斷變化的任務需求做出調整;因此,模型創建者不僅要完善模型自動訓練的流程,還需要確保模型發生局部誤差的概率趨近於零,才能持續滿足客戶提出的業務目標。

當機器學習模型產出的結果出乎預期時,有時不是源於機器學習的模型預測錯誤,而是作業鏈中出現問題。舉例而言,推薦引擎需與線上網頁建立連結以向顧客展示商品;而當連結中斷或是有延遲的時候,客戶的點擊率就會被影響。這樣的結果並不是模型推薦錯誤造成的,而且往往要花上一段時間才能找出錯誤。如何能夠快速的找出可能的問題所在,是採用MLaaS的公司需要具備的能力。

維持MLaaS模型整體的穩定性和機動性是一件非常具有挑戰性的任務,需要仰賴持續不斷的投資、研究和實驗落實,能做到這一點的公司將享有MLaaS帶來的巨大回報,因為隨著時間持續迭代的模型能幫助他們適應不斷變化的商業環境,在業界保持領先地位。欲了解更多關於人工智慧與機器學習的部落格文章,歡迎參考Appier部落格

關於 Appier

Appier 透過人工智慧協助企業解決棘手的商業挑戰。身為全球領導品牌的合作夥伴,Appier提供一套全方位的企業級產品,支持數據驅動的決策並加速業務增長。Appier 於 2012 年由一群充滿熱情的電腦科學家和資訊工程師共同創立。如今,Appier 在亞太及歐洲地區 15 個營業據點擁有 450多名員工,並榮獲《財富》雜誌評選為 Top 50 人工智慧公司。Appier 已從紅杉資本,軟銀集團和 LINE 等投資者募集了 1.62 億美元的資金。欲了解更多訊息,請造訪 www.appier.com

Media OutReach新聞



時事討論


關注CyberCTM